Some extensions of the uncertainty principle
نویسندگان
چکیده
We study the formulation of the uncertainty principle in quantum mechanics in terms of entropic inequalities, extending results recently derived by BialynickiBirula [1] and Zozor et al. [2]. Those inequalities can be considered as generalizations of the Heisenberg uncertainty principle, since they measure the mutual uncertainty of a wave function and its Fourier transform through their associated Rényi entropies with conjugated indices. We consider here the general case where the entropic indices are not conjugated, in both cases where the state space is discrete and continuous: we discuss the existence of an uncertainty inequality depending on the location of the entropic indices α and β in the plane (α, β). Our results explain and extend a recent study by Luis [3], where states with quantum fluctuations below the Gaussian case are discussed at the single point (2, 2).
منابع مشابه
Non-hermitian extensions of Schrödinger type uncertainty relations
In quantum mechanics it is well known that observables are represented by hermitian matrices (or operators). Uncertainty relations are represented as some kinds of trace inequalities satisfied by two observables and one density matrix (or operator). Now we try to release the hermitian restriction on observables. This is only a mathematical interest. In this case we give several non-hermitian ex...
متن کاملCanonical thermostatics of ideal gas in the frame work of generalized uncertainty principle
The statistical consequences of minimal length supposition are investigated for a canonical ensemble of ideal gas. These effects are encoded in the so-called Generalized Uncertainty Principle (GUP) of the second order. In the frame work of the considered GUP scenario, a unique partition function is obtained by using of two different methods of quantum and classical approaches. It should be noti...
متن کاملSome Properties of Ideal Extensions in Ternary Semigroups
A concept of ideal extensions in ternary semigroups is introduced and throughly investigated. The connection between an ideal extensions and semilattice congruences in ternary semigroups is considered.
متن کاملSome new extensions of Hardy`s inequality
In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions
متن کاملUncertainty principles and weighted norm inequalities
Abstract. The focus of this paper is weighted uncertainty principle inequalities in harmonic analysis. We start by reviewing the classical uncertainty principle inequality, and then proceed to extensions and refinements by modifying two major results necessary to prove the classical case. These are integration by parts and the Plancherel theorem. The modifications are made by means of generaliz...
متن کامل